Physics in one dimension.

نویسندگان

  • A van Houselt
  • J Schäfer
  • H J W Zandvliet
  • R Claessen
چکیده

With modern microelectronics moving towards smaller and smaller length scales on the (sub-) nm scale, quantum effects (apart from band structure and band gaps) have begun to play an increasingly important role. This especially concerns dimensional confinement to 2D (high electron mobility transistors and integer/fractional quantum Hall effect physics, graphene and topological insulators) and 1D (with electrical connections eventually reaching the quantum limit). Recent developments in the above-mentioned areas have revealed that the properties of electron systems become increasingly exotic as one progresses from the 3D case into lower dimensions. As compared to 2D electron systems, much less experimental progress has been achieved in the field of 1D electron systems. The main reason for the lack of experimental results in this field is related to the difficulty of realizing 1D electron systems. Atom chains created in quantum mechanical break junction setups are too short to exhibit the typically 1D signatures. As an alternative, atomic chains can be produced on crystal surfaces, either via assembling them one-by-one using a scanning tunnelling microscope or via self-assembly. The drawback of the latter systems is that the atomic chains are not truly 1D since they are coupled to the underlying crystal and sometimes even to the neighbouring chains. In retrospect, this coupling turns out to be an absolute necessity in the experiment since true 1D systems are disordered at any non-zero temperature [1]. The coupling to the crystal and/or neighbouring chains shifts the phase transition, for example, a Peierls instability, to a non-zero temperature and thus allows experiments to be performed in the ordered state. Here, we want to emphasize that the electronic properties of the 1D electron system are fundamentally different from its 2D and 3D counterparts. The Fermi liquid theory, which is applicable to 2D and 3D electron systems, breaks down spectacularly in the 1D case and should be replaced by the Luttinger liquid theory [2, 3]. In 1D electron systems electron–electron interactions play a very prominent role, and one of the most exciting predictions is that the electron loses its identity and separates into two collective excitations of the quantum mechanical many body system: a spinon that carries spin without charge, and a holon that carries the positive charge of a hole without its spin. In this special section, we have attempted to collect a series of papers that gives an impression of the current status of this rapidly evolving field. …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy band correction due to one dimension tension in phosphorene

Among graphene-like family, phosphorene is a typical semiconducting layered material, which can also be a superconductor in low temperature. Applying pressure or tension on phosphorene lattice results in changing the hopping terms, which change the energy bands of the material. In this research we use the tight-binding Hamiltonian, including relevant hopping terms, to calculate energy bands of ...

متن کامل

Solvation Force of Ellipse-Shaped Molecules Moving in One Dimension and Confined between Two Parallel Planar Walls

     The model fluids containing hard ellipses (HEs) and Gay-Berne (GB) particles where their center is moving in one dimension and confined between two parallel walls with different interactions are investigated using Monte Carlo simulation, NVT ensemble. The dependency of fluid pressure with respect to the wall distances is studied. The oscillatory behaviors are seen in this quantity against ...

متن کامل

An Adaptive Physics-Based Method for the Solution of One-Dimensional Wave Motion Problems

In this paper, an adaptive physics-based method is developed for solving wave motion problems in one dimension (i.e., wave propagation in strings, rods and beams). The solution of the problem includes two main parts. In the first part, after discretization of the domain, a physics-based method is developed considering the conservation of mass and the balance of momentum. In the second part, ada...

متن کامل

Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension

Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...

متن کامل

اثرات بس ذره‌ای در مایعات الکترونی ابعاد کم

 This review article is about the role of electron-electron interactions in low dimensional systems and its transport properties in nano-structures. It begins with a review of the pair-distribution function theory of electron liquid systems taking into account the electron-electron interactions. We extend the theory for highly correlated system such two- and one-dimensional electron liquids. We...

متن کامل

Topological Electronic Liquids Electronic Physics of One Dimension Beyond the One Dimension

There is a class of electronic liquids in dimensions greater than one, which show all essential properties of one dimensional electronic physics. These are topological liquids correlated electronic systems with a spectral flow. Compressible topological electronic liquids are superfluids. In this paper we present a study of a conventional model of a topological superfluid in two spatial dimensio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 25 1  شماره 

صفحات  -

تاریخ انتشار 2013